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A SUMMARY OF INFERENCE

METHODS

Chapter

13
• show the process of choosing an appropriate

inference technique from among those presented in
earlier chapters.

• consider several examples of choosing an inference
method.

Objectives
In this chapter we summarize inference methods presented throughout the text. We will

13.1 Introduction
In Chapters 2 and 6 through 12 we introduced many statistical methods for visually
and numerically summarizing data and for making inferences. Statistics students are
often overwhelmed by the number and variety of procedures that have been pre-
sented. What a statistician sees as a clearly arranged set of tools for analyzing data
can appear as a blur to the novice. In this chapter we present a variety of examples
that demonstrate the analysis process from exploration and summary to inference
using some of the methods presented in earlier chapters. With the examples, we also
provide some guidelines that are useful in deciding how to make an inference from
a given set of data.

When presented with a set of data, it is useful to ask a series of questions:

1. What question were the researchers attempting to answer when they collected
these data? Data analysis is done for a purpose: to extract information and to
aid decision making. When looking at data, it helps to bear in mind the pur-
pose for which the data were collected. For example, were the researchers try-
ing to compare groups, perhaps patients given a new drug and patients given a
placebo? Were they trying to see how two quantitative variables are related, so
that they can use one variable to make predictions of the other? Were they
checking whether a hypothesized model gives accurate predictions of the
probabilities associated with a categorical variable? A good understanding of
why the data were collected often clarifies the next question:

2. What is the response variable in the study? For example, if the researchers were
concerned with the effect of a medication on blood pressure, then the likely re-
sponse variable is in blood pressure of an individual (a continuous
numeric variable). If they were concerned with whether or not a medication
cures an illness, then the response variable is categorical with two levels: yes if a
person is cured, no if a person is not cured, or maybe even categorical with
three or more ordered levels: fully cured, improved, no improvement.

Y = change
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3. What predictor variables, if any, were involved? For example, if a new drug is
being compared to a placebo, then the predictor variable is group member-
ship: A patient is either in the group that gets the new drug or else the patient
is in the placebo group. If height is used to predict weight, then height is the
predictor (and weight is the response variable). Sometimes there is no predic-
tor variable. For example, a researcher might be interested in the distribution
of cholesterol levels in adults. In this case, the response variable is cholesterol
level, but there is no predictor variable. (One might argue that there is a pre-
dictor: whether or not someone is an adult. If we wished to compare choles-
terol levels of adults to those of children, then whether or not someone is an
adult would be a predictor. But if there is no comparison to be made, so that
everyone in the study is part of the same group (adults), then it is not accurate
to speak of a predictor variable, since group membership does not vary from
person to person.)

The answers to these questions help frame the analysis to be conducted. Some-
times the analysis will be entirely descriptive and will not include any statistical in-
ference, such as when the data are not collected by way of a random sample. Even
when a statistical inference is called for, there is generally more than one way to
proceed. Two statisticians analyzing the same set of data may use somewhat differ-
ent methods and draw different conclusions. However, there are commonly used
statistical procedures in various situations. The flowchart given in Figure 13.1.1
helps to organize the inference methods that have been presented in this book.

Numeric
response

Numeric
predictors

Correlation/regression (chap. 12)

1 group

2 groups

2 levels
each

Independent samples

Dependent samples

Chi-square independence test for 2 × 2 (chap. 10)
    or Fisher’s Exact test

McNemar’s test (chap. 10)

Many levels each, independent samples Chi-square independence test for r × k (chap. 10)

3 or more
independent
groups

Normal response
Common s ANOVA (chap. 11)

Not Transform or

Not normal Transform, then    or Kruskal–Wallis (not covered)

Independent

Normal response

Not normal

Dependent

Normal response

Not normal

Transform, then     or  Wilcoxon–Mann–Whitney

Cl, test for m1 – m2 using t (chap. 6 & 7)

Transform, then
or  sign test or
signed-rank test (chap. 8)

Cl, test for md using paired t (chap. 8)

Normal response Cl for m using t (chap. 6)

Not normal Transform, then

Categorical
predictors
(groups)

1 categorical
variable

Yes/no

Many categories Chi-square goodness-of-fit (chap. 9)

n large

n small

Cl for p using Z (chap. 9)

Binomial (chap. 3)

2 categorical
variables

Numeric predictor(s) Logistic regression (chap. 12)

Data

Categorical
response

Figure 13.1.1 A flowchart of inference methods
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To use this flowchart, we start by asking whether the response variable is quantitative or
categorical.We then consider the type of predictor variables in the study and whether
the samples collected are independent of one another or are dependent (e.g., matched
pairs). Many of the methods, such as the confidence interval for a population mean
presented in Chapter 6, depend on the data being from a population that has a normal
distribution. (This condition is less important for large samples than it is for small sam-
ples, due to the Central Limit Theorem.) Nonnormal data can often be transformed
to approximate normality and normal-based methods then applied. If such transfor-
mation fails to achieve approximate normality, then nonparametric methods, such as
the Wilcoxon-Mann-Whitney test or the Wilcoxon Signed-Rank test, can be used.

Note that the flowchart only directs attention to the collection of inference
methods presented in the previous chapters; this is not an exhaustive list. Beware of
the Mark Twain fallacy:“When your only tool is a hammer, every problem looks like
a nail.” Not every statistical inference problem can be addressed with the methods
presented here. In particular, these methods center on consideration of parameters,
such as a population mean, μ, or proportion, p. Sometimes researchers are inter-
ested in other aspects of distributions, such as the 75th percentile. When in doubt
about how to proceed in an analysis, consult a statistician.

Exploratory Data Analysis

No matter what type of analysis is being considered, it is always a good idea to start
by making one or more graphs of the data. The choice of graphics depends on the
type of data being analyzed. For example, when comparing two samples of quantita-
tive data, side-by-side dotplots or boxplots are informative—both as a visual com-
parison of the two samples and for assessing whether or not the data satisfy the
normality condition. When analyzing categorical data, bar charts are useful. When
dealing with two quantitative variables, scatterplots are helpful.

Bear in mind that a statistical analysis is intended to help us understand the sci-
entific problem at hand. Thus, conclusions should be stated in the context of the
scientific study. In Section 13.2 we present some examples of data sets and the kinds
of analyses that might be performed on them.

13.2 Data Analysis Examples
In this section we consider several data sets and the kinds of analyses that are appro-
priate for each. The three questions stated in Section 13.1 and the flowchart given in
Figure 13.1.1 provide a framework for the discussion of the following examples.

Gibberellic Acid Gibberellic acid (GA) is thought to elongate the stems of plants. Re-
searchers conducted an experiment to investigate the effect of GA on a mutant
strain of the genus Brassica called ros. They applied GA to 17 plants and applied
water to 15 control plants. After 14 days they measured the growth of each of the 32
plants. For the 15 control plants the average growth was 26.7 mm, with an SD of 37.5
mm. For the 17 plants treated with GA the average growth was 92.6 mm, with an SD
of 41.7 mm. The data are given in Table 13.2.1 and are graphed in Figure 13.2.1.1

Let us turn to the three questions stated in Section 13.1. (1) In this experiment,
the researchers were trying to establish whether GA affects the growth rate of ros;
(2) the response variable is 14-day growth of ros, which is numeric; (3) the predictor
variable is group membership (GA group or control group) and is categorical; the
two groups are independent of one another.

Example
13.2.1
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Figure 13.2.1 Dotplots of growth of ros
plants (mm) after 14 days

Table 13.2.1 Growth of ros plants (mm) after 14 days

Control GA

3 71

2 87

34 117

13 80

6 112

118 66

14 128

107 153

30 131

9 45

3 38

3 137

49 57

4 163

6 47

108

35

Mean 26.7 92.6

SD 37.5 41.7

The flowchart in Figure 13.1.1 directs us to consider a two-sample t test, if the
data are normal or can be transformed to normality, or a Wilcoxon-Mann-Whitney
test. Figure 13.2.2 shows that the distribution of the control sample of data is
markedly nonnormal; thus, a transformation is called for.

−2

0

25

50

G
ro

w
th

 (
m

m
)

75

100

−1 0

Control

Normal scores
(a)

1 2 −2

50

100

G
ro

w
th

 (
m

m
)

150

−1 0

GA

Normal scores
(b)

1 2

Figure 13.2.2 Normal
probability plots of (a)
control data and (b) GA
data



554 Chapter 13 A Summary of Inference Methods

Control GA

0.0

0.5

1.0

1.5

2.0

L
og

(g
ro

w
th

)

G
ro

w
th

 (
m

m
)

100

10

1

Figure 13.2.3 Dotplots of
log(growth) of ros plants
(mm) after 14 days

Taking logarithms of each of the observations produces the dotplots and normal
probability plots in Figures 13.2.3 and 13.2.4.
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Figure 13.2.4 Normal
probability plots of (a)
control data and (b) GA
data in log scale

In log scale the data do not show marked evidence of abnormality (Shapiro–
Wilk P-values for Control and GA are 0.2083 and 0.2296, respectively), so we can
proceed with a two-sample t test. The standard deviations of the two samples are
clearly quite different, as can be seen from Figure 13.2.3. However, an unpooled t
test is still appropriate. The following computer output shows that and
the P-value is very small. Thus, we have strong evidence that GA increases growth
of ros. �

Two Sample t-test

data: log10(Growth)

, , 

alt. hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

, -0.5234687-1.1943596

p-value 6 0.0001df = 17.445t = -5.3917

ts = -5.392
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Whale Swimming Speed A biologist was interested in the relationship between the
velocity at which a beluga whale swims and the tail-beat frequency of the whale. A
sample of 19 whales was studied and measurements were made on swimming ve-
locity, measured in units of body lengths of the whale per second (so that a value of
1.0 means that the whale is moving forward by one body length, L, per second) and
tail-beat frequency, measured in units of hertz (so that a value of 1.0 means one tail-
beat cycle per second).2 Here are the data:

Example
13.2.2

WHALE
VELOCITY 

(L/sec)
FREQUENCY 

(Hz) WHALE
VELOCITY 

(L/sec)
FREQUENCY 

(Hz)

1 0.37 0.62 11 0.68 1.20

2 0.50 0.675 12 0.86 1.38

3 0.35 0.68 13 0.68 1.41

4 0.34 0.71 14 0.73 1.44

5 0.46 0.80 15 0.95 1.49

6 0.44 0.88 16 0.79 1.50

7 0.51 0.88 17 0.84 1.50

8 0.68 0.92 18 1.06 1.56

9 0.51 1.08 19 1.04 1.67

10 0.67 1.14

It would be natural to ask,“When tails beats faster, do whales travel faster?” but
the biologist conducting the study focused on the related question, “Does tail-beat
frequency depend on velocity?” For the biologist’s question, the response variable,
frequency, is numeric, and the predictor is velocity, which is also numeric. Thus, we
can consider using regression analysis to study the relationship between velocity
and frequency. Figure 13.2.5 is a scatterplot of the data, which shows an increasing
trend in frequency as velocity increases.
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Figure 13.2.5 Scatterplot
of frequency versus
velocity

A regression model for these data is . Fitting the model to
the data gives the equation , or 

as shown in the following computer output. Figure 13.2.6 shows the resid-
ual plot for this fit. The fact that this plot does not have any clear patterns in it
supports the use of the regression model.

Velocity,
Frequency = 0.19 + 1.439 *yN = 0.19 + 1.439x

Y = b0 + b1X + e
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Figure 13.2.6 Residual
plot for frequency
regression fit

Coefficients:

Estimate Std. Error t value 

(Intercept) 0.1895 0.1004 1.887 0.0763

Velocity 1.4393 0.1451 9.917 1.75e-08

Residual standard error: 0.1396 on 17 degrees of freedom
R-squared: 0.8526

Pr (7 |t|)

The null hypothesis

is tested with a t test, as shown in the regression output.A normal probability plot of
the residuals, given in Figure 13.2.7, supports the use of the t test here, since it indi-
cates that the distribution of the 19 residuals is consistent with what we would
expect to see if the random errors came from a normal distribution. The t statistic
has 17 degrees of freedom and a P-value of less than 0.0001. Thus, the evidence that
frequency is related to velocity is quite strong; we reject the claim that the linear
trend in the data arose by chance.

Continuing the analysis, the computer output shows that r2 is 85.3%. Thus, in
the sample 85.3% of the variability in frequency is accounted for by variability in
velocity. (This is significantly different from zero, as indicated with the t test for

.) �H0:b1 = 0

H0:b1 = 0
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Figure 13.2.7 Normal
probability plot of residuals
for frequency regression fit
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Tamoxifen In a randomized, double-blind experiment the drug tamoxifen was given
to 6,681 women and a placebo was given to 6,707 other women. After four years
there were 89 cases of breast cancer in the tamoxifen group, compared with 175 in
the placebo group.3

The purpose of this experiment was to determine whether tamoxifen is effective
in preventing cancer. Note that because this was an experiment, and not an observa-
tional study, we can talk in terms of a cause–effect relationship.The response variable
is whether or not a woman developed cancer. The predictor variable is group mem-
bership (i.e., whether or not a woman was given tamoxifen). Figure 13.2.8 is a bar
chart of the data, showing that cancer was much more common in the placebo group.

These data can be organized into a contingency table, such as Table 13.2.2.
A chi-square test of independence yields . With 1 degree of freedom, the
P-value for this test is nearly zero. There is very strong evidence that tamoxifen
reduces the probability of breast cancer.

xs
2 = 28.2

2 * 2

Example
13.2.3
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Figure 13.2.8 Bar chart of
the tamoxifen data

Table 13.2.2 Tamoxifen data

Treatment

Placebo Tamoxifen

Cancer 175 89 264

No cancer 6,532 6,592 13,124

Total 6,707 6,681 13,388

We can also construct a confidence interval with these data. Of placebo patients,

or 2.61% developed cancer so that . Of tamoxifen

patients, or 1.33% developed cancer so that . The 

standard error of the difference is

A 95% confidence interval for is or
(0.0080, 0.0174). Thus, we are 95% confident that tamoxifen reduces the probability
of breast cancer by between 0.80 and 1.74 percentage points.

We can also calculate the relative risk of cancer. The estimated relative risk is

Thus, we estimate that breast cancer is 1.96 times as likely when taking placebo as
when taking tamoxifen. �

Chromosome Puffs Heat shock proteins (HSPs) are a type of protein produced by
some organisms as protection against damage from exposure to high temperature.
In the fruit fly Drosophila melanogaster the genes that encode HSPs are found on

Example
13.2.4

Pr{Cancer |Tamoxifen}
Pr{Cancer |Placebo}

=
0.0261
0.0133

= 1.96

(0.0262 - 0.0135) ; 1.96(0.0024)p1 - p2

= 0.0024

SEAP'1-P
'

2B = C(0.0262)(1 - 0.0262)
6707 + 2

+
0.0135(1 - 0.0135)

6681 + 2

p
'

2 =
89 + 1

6681 + 2
= 0.0135

89
6681

p
'

1 =
175 + 1
6707 + 2

= 0.0262
175
6707
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chromosomes that uncoil and appear to puff out. This chromosome puffing can be
seen under a microscope.A biologist counted the number of puffs per chromosomal
arm from the salivary glands of 40 Drosophila larvae that had been heat shocked at
37 °C for 30 minutes, 40 larvae that had been heat shocked for 60 minutes, and 40
control larvae.

The purpose of this experiment was to determine the effect, if any, of heat shock
on the HSPs. The response variable is the number of puffs on a chromosome arm,
which is numeric. The predictor variable, group membership (control, 30 minutes, or
60 minutes), is categorical. Dotplots of the data are given in Figure 13.2.9; the data
are summarized in Table 13.2.3.4
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Figure 13.2.9 Dotplots of puffs per chromosome
arm for Drosophila heat shock experiment

Table 13.2.3 Puffs per chromosome arm for
Drosophila heat shock experiment

Group n Mean SD

Control 40 1.88 0.76

30 min. 40 5.20 1.54

60 min. 40 3.45 1.18

The dotplots suggest an effect due to heat shock (and we can speak of an ef-
fect, not just an association, because this was an experiment). This visual impres-
sion can be confirmed with an analysis of variance. The plots also show that the
distributions take on only a few values each, so that the normality condition for
ANOVA is not met. Since, however, the distributions appear to be reasonably
symmetric, the sample sizes moderately large and equal, and the SDs are similar
among the groups, we can have confidence in the ANOVA P-value. The following
ANOVA computer output confirms that there is strong evidence against

. We conclude that heat shock does, indeed, increase the number
of puffs per chromosome arm.

Df Sum Sq Mean Sq F value
Group 2 221.32 110.658 76.757
Residuals 117 168.68 1.442
Total 110 390.00

As an extension of the ANOVA, we could consider a contrast that compares the
control mean to the average of the two heat shock means. �

Therapeutic Touch Therapeutic touch (TT) is a form of alternative medicine in which
a practitioner manipulates the human energy field of the patient. However, many
persons have questioned the ability of TT practitioners to detect the human energy
field—and whether the human energy field even exists. An experimenter tested

Example
13.2.5

6 0.0001
Pr (7 F)

H0: m1 = m2 = m3
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the abilities of 28 TT practitioners as follows. A screen was set up between the
experimenter and the practitioner, who sat on opposite sides of a table. The practi-
tioner extended his or her hands under the screen and rested them, palms up, on the
table.The researcher tossed a coin to choose one of the practitioner’s hands.The ex-
perimenter then held her right hand, palm down, above the chosen hand of the prac-
titioner.The practitioner was then asked to identify which hand had been chosen, as
a test of whether the practitioner could detect a human energy field extending from
the hand of the experimenter.

Each of the 28 TT practitioners was tested 10 times. The number of correct de-
tections, “hits,” in 10 trials varied from 1 to 8, with an average of 4.4. There were 123
hits in the 280 total trials.5 Table 13.2.4 shows the distribution of hits among the 28
tested practitioners.

The goal of this experiment was to determine the ability of TT practitioners to
detect the human energy field. The response variable is a yes/no (categorical) vari-
able: yes for a hit and no for a miss. There is no predictor variable here, there is just
a single group of 28 TT practitioners who were tested.

Let p denote the probability of a hit in one of the trials of the experiment. The
natural null hypothesis is . One way to analyze the data would be to con-
duct a chi-square goodness-of-fit test of H0 using the 280 total trials, with a direc-
tional alternative .The P-value for this test is greater than 0.50, since the
data do not deviate from H0 in the direction specified by HA.

One might argue that p might be greater than 0.5 for some TT practitioners,
but perhaps not for all of them. If p is not the same for each TT practitioner
(whether or not p is 0.5 for anyone), then the chi-square goodness-of-fit test using
all 280 trials is not appropriate, since the 280 trials are not independent of one an-
other. However, the data for each of the 28 practitioners could be analyzed sepa-
rately. A binomial model could be used in these analyses, since the sample size of

is rather small. The binomial probabilities are given in Table 13.2.5. The
probability of 8 or more hits in 10 trials, for a binomial with , is

. Thus, if the data from each of the 28 prac-
titioners were analyzed separately, testing versus , theHA:p 7 0.5H0:p = 0.5
0.04395 + 0.00977 + 0.00098 = 0.0547

p = 0.5
n = 10

HA:p 7 0.5

H0:p = 0.5

Table 13.2.4 Distribution of hits per ten trials 
in therapeutic touch experiment

Number of hits Number of practitioners

0 0

1 1

2 1

3 8

4 5

5 7

6 2

7 3

8 1

9 0

10 0

Total 28
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smallest of the 28 P-values would be 0.0547, and again provides no significant
evidence in support of HA.*

A different way to conduct the analysis is to investigate whether the 280 ob-
servations presented in Table 13.2.4 are consistent with a binomial model. In par-
ticular, we can check the model that states that Y has a binomial distribution, with

and , where Y is the number of hits in 10 trials. (This is similar to
the analysis presented in Section 3.9.) A goodness-of-fit test can be used here.
Table 13.2.5 shows the observed numbers (from Table 13.2.4) and expected num-
bers for each of the 11 possible outcomes. (The expected numbers don’t sum to 28
due to round-off error.)

The chi-square statistic is . The test statistic has 10 de-

grees of freedom, since there are 11 categories in the model.The P-value for this test
is 0.306, which is quite large. Thus, the data are consistent with a binomial distribu-
tion for which (i.e., the TT practitioners might as well have tossed coins to
choose a hand, rather than trying to detect the human energy field of the experi-
menter). (Note: These data do not disprove the existence of the human energy field;
they only fail to provide evidence for its existence). �

Brief Examples

We will now consider some examples for which we will identify the type of analysis
that is appropriate, but we won’t conduct the analysis.

Seastars Researchers measured the length of the longest ray on each of over 200
members of the species Phataria unifascialis (a seastar found in the waters of the
Gulf of California, Mexico). For a sample of 184 individuals found near Loreto, the

Example
13.2.6

p = 0.5

xs
2 = ©

(oi - ei)2

ei
= 11.7

p = 0.5n = 10

Table 13.2.5 Observed and expected numbers (if ) of hits per ten trials in
the therapeutic touch experiment

p = 0.5

Number of hits Binomial probability Observed number, O Expected number, E

0 0.00098 0 0.027

1 0.00977 1 0.273

2 0.04395 1 1.231

3 0.11719 8 3.281

4 0.20508 5 5.742

5 0.24609 7 6.891

6 0.20508 2 5.742

7 0.11710 3 3.281

8 0.04395 1 1.231

9 0.00977 0 0.273

10 0.00098 0 0.027

Total 1.00000 28 27.999

*Considering the material in optional Section 11.9 on multiple comparisons, note that if we were to consider all
28 of these tests, we ought to require a great deal of evidence before rejecting H0. Using the Bonferroni correc-
tion, we would require that an individual P-value be less than before rejecting H0.acw = 0.05/28 = 0.0018
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average length was 6.78 cm, with an SD of 1.21 cm. For a sample of 77 individuals
found near Bahia de Los Angeles, the average length was 8.13 cm, with an SD of
1.33 cm.6

The response variable is numeric and there are two independent groups. Thus, a
two-sample t test is appropriate, along with a confidence interval for the difference
in population means. (Note: The normality condition is not essential, since the sam-
ple sizes are quite large.) �

Twins Researchers in Finland studied the physical activity levels of hundreds of sets
of same-sex twins. In 1975 they classified subjects into the physical activity cate-
gories “exerciser” and “sedentary.” They kept track of the health of the subjects
through 1994, by which time there were several pairs of twins for whom one twin
was alive, but the other had died. In this group there were 49 “sedentary” twins who
were living, but whose “exerciser” twin pair was dead. There were 76 “exerciser”
twins who were living, but whose “sedentary” twin pair was dead.7

The response variable in this observational study is whether or not a subject is
alive, a categorical variable. The predictor is also categorical: whether the person
is “sedentary” or is an “exerciser.” Since the data are paired, McNemar’s test is
appropriate. �

Soil Samples Researchers took eight soil samples at each of six locations in
Mediterranean pastures. They divided the samples into four pairs and put the soil
in pots. One pot from each pair was watered continuously, while the other pot was
watered for 13 days, then not watered for 18 days, and then watered again for 30
days. The researchers recorded the number of germinations in each pot during the
experiment.8

This example is similar to Example 13.2.6, in that there are two samples to be
compared and the response variable is numeric. However, the samples here are
paired, so a paired analysis (Chapter 8) is called for. If the 24 sample differences
show a normal distribution, then a paired t test or confidence interval could be used;
if not, a transformation could be tried, or a Wilcoxon signed-rank or sign test could
be used. �

Vaccinations In 1996 there was an outbreak of the disease varicella in a child care
center in Georgia. Some of the children had been vaccinated against varicella, but
others had not. Varicella occurred in 9 out of 66 vaccinated children and in 72 out of
82 unvaccinated children.9

The response and predictor variables in this experiment are both categorical.
The data could be arranged into a contingency table and analyzed with a chi-
square test of independence.The difference in sample proportions is obviously quite
large. However, this is an observational study and not an experiment. Thus, we can-
not conclude that the difference in proportions is entirely due to the effect of the
vaccine, since the effects of other variables, such as economic status, are confounded
with the effect of the vaccine. �

Estrogen and Steroids Plasma estrone plus estradoil (Plasma ) steroid levels were
measured in women given estrogen (Premarin) and in a control group of women.
The women given estrogen were divided into three treatment groups. One group
was given a daily dose of 0.625 mg, one group was given 1.25 mg, and the third group

E1+2Example
13.2.10

2 * 2

Example
13.2.9

Example
13.2.8

Example
13.2.7
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was given 2.5 mg.The researchers noted that the plasma steroid levels were not nor-
mally distributed, but became so after a logarithm transformation was applied. In
log scale, the data are given in Table 13.2.6.10

Table 13.2.6 Log ng/100 ml plasma 
concentration for estrogen study

E1+2

Group n Mean SD

Control 30 2.01 0.27

0.625 16 2.10 0.31

1.25 24 2.34 0.39

2.5 21 2.20 0.24

The response variable in this experiment, log(plasma concentration), is
numeric. It has already been transformed to normality. There are four independent
groups to be compared, so an analysis of variance is appropriate. A contrast that
compares the control to the average of the three treatment groups would also be
useful. �

Damselflies A researcher captured male damselflies and randomly assigned them to
one of three groups. For those in the first group the sizes of red spots on the wing
were artificially enlarged with red ink. For those in the second group the wing spots
were enlarged with clear ink. The third group served as a control. The damselflies
were then released into a contained area.The numbers surviving in each of the three
groups 22 days later were determined. There were 312 damselflies in each of the
three groups. After 22 days there were 41 survivors in the “artificially enlarged with
red ink” group, 49 survivors in the “enlarged with clear ink” group, and 57 survivors
in the control group.11

The response variable in this experiment, survival, is categorical, as is the predic-
tor variable, ink status/type. These data could be arranged into a contingency
table and analyzed with a chi-square test of independence. �

Tobacco Use Prevention In the Hutchinson Smoking Prevention Project 40 school
districts in the state of Washington were formed into 20 pairs on the basis of size,
location, and prevalence of high school tobacco use as of the beginning of the
study. In each pair, one district was randomly assigned to be in an intervention
group and the other was assigned to the control group. If a school district was in
the intervention group, then the third-grade students in the district were given a
curriculum on preventing tobacco use and the teachers in the district were given
special training to help students refrain from smoking. This was repeated one year
later with the next new cohort of third-grade students. All the students were then
followed for several years. A primary outcome measurement of the study was
whether or not students were smoking two years after graduating from high
school.

The experimental unit here is an entire school district, so it is natural to use as
the response variable the percentage of students from a district who smoke, a nu-
meric variable. The predictor is categorical: intervention group or control group.
There are two groups, which are paired together by the design of the experiment.
Out of the 20 pairs, there were 13 pairs in which the smoking rate was higher in the
control district and 7 pairs in which the smoking rate was higher in the intervention
district.12 A sign test could be used to analyze these data. �

Example
13.2.12

2 * 3

Example
13.2.11

E1+2



Section 13.2 Data Analysis Examples 563

Exercises 13.2.1–13.2.22

13.2.1 Researchers conducted a randomized, double-
blind, clinical trial in which some patients with schizo-
phrenia were given the drug clozapine and others were
given haloperidol.After one year 61 of 163 patients in the
clozapine group showed clinically important improve-
ment in symptoms, compared with 51 out of 159 in the
haloperidol group.13 Identify the type of statistical
method that is appropriate for these data, but do not ac-
tually conduct the analysis.

13.2.2 Consider the data of Exercise 13.2.1. Conduct an
appropriate complete analysis of the data that also in-
cludes a graphical display and discussion of how the data
do or do not meet the necessary conditions for validity.

13.2.3 A biologist collected data on the height (in inch-
es) and peak expiratory flow (PEF—a measure of how
much air a person can expire, measured in l/min) for 10
women.14 Here are the data:

level. To study this, they designed an experiment in which
20 healthy subjects were given, in random order, a high-
fat breakfast and a low-fat breakfast at 8 A.M., following a
12-hour fast, on days one week apart from each other.
Serum triglyceride levels were measured on each subject
before each breakfast and again four hours after each
breakfast.16 If you had access to all of the measurements
collected in this experiment, how would you analyze the
data?

13.2.8 Biologists were interested in the distribution of
trees in a wooded area. They intended to use the number
of trees per 100-square meter plot as their unit of meas-
urement. However, they were concerned that the shapes
of the plots might affect the data collection. To investi-
gate the possibility, they counted the numbers of trees in
square plots, round plots, and rectangular plots. The data
are shown in the following table.17 What type of analysis
is appropriate for these data?

Is PEF related to height? Identify the type of statistical
method that is appropriate for these data and this ques-
tion, but do not actually conduct the analysis.

13.2.4 Consider the data of Exercise 13.2.3. Maria is 1
inch taller than Anika. Using the information from Exer-
cise 13.2.3, how much greater would you predict Maria’s
PEF to be than Anika’s?

13.2.5 A geneticist self-pollinated pink-flowered snap-
dragon plants and produced 97 progeny with the follow-
ing colors: 22 red plants, 52 pink plants, and 23 white
plants.15 The purpose of this experiment was to investi-
gate a genetic model that states that the probabilities of
red, pink, and white are 0.25, 0.50, and 0.25. Identify the
type of statistical method that is appropriate for these
data, but do not actually conduct the analysis.

13.2.6 Consider the data of Exercise 13.2.5. Conduct an
appropriate complete analysis of the data that also in-
cludes a graphical display and discussion of how the data
do or do not meet the necessary conditions for validity.

13.2.7 The effect of diet on heart disease has been wide-
ly studied.As part of this general area of investigation, re-
searchers were interested in the short-term effect of diet
on endothelial function, such as the effect on triglyceride

13.2.9 Consider the data of Exercise 13.2.8. Conduct an
appropriate complete analysis of the data that also in-
cludes a graphical display and discussion of how the data
do or do not meet the necessary conditions for validity.

13.2.10 A sample of 15 patients was randomly split into
two groups as part of a double-blind experiment to com-
pare two pain relievers.18 The 7 patients in the first group
were given Demerol and reported the following numbers
of hours of pain relief:

2, 6, 4, 13, 5, 8, 4

PLOT SHAPE
SQUARE ROUND RECTANGULAR

5 5 10

5 7 2

5 5 3

8 2 12

8 4 9

7 4 5

4 4 3

9 7 6

9 7 5

7 10 3

5 9 8

2 2 9

8 7 3

Mean 6.3 5.6 6.0

SD 2.14 2.47 3.27

SUBJECT HEIGHT PEF SUBJECT HEIGHT PEF

1 63 410 6 62 360

2 63 440 7 67 380

3 66 450 8 64 380

4 65 510 9 65 360

5 64 340 10 67 570
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The 8 patients in the second group were given an experi-
mental drug and reported the following numbers of
hours of pain relief.

0, 8, 1, 4, 2, 2, 1, 3

How might these data be analyzed?

13.2.11 Consider the data of Exercise 13.2.10. Conduct
an appropriate complete analysis of the data that also
includes a graphical display and discussion of how the
data do or do not meet the necessary conditions for
validity.

13.2.12 A researcher was interested in the relationship
between forearm length and, height. He measured the
forearm lengths and heights of a sample of 16 women and
obtained the following data.19 How might these data be
(i) visualized and (ii) analyzed?

doses of “Gammagard made from unscreened or first-
generation anti-HCV-screened plasma.” Among 48 per-
sons who received 0 to 3 doses, there were 4 cases of
HCV infection. There were 2 cases of HCV infection
among 45 persons who received 4 to 20 doses, there were
7 cases of HCV infection in the 57 persons who received
between 21 and 65 doses, and there were 10 cases of HCV
infection among the 51 persons who received more than
65 doses.21 What type of analysis is appropriate for these
data?

13.2.16 Consider the data of Exercise 13.2.15. Conduct
an appropriate analysis of the data.

13.2.17 An experiment was conducted to study the effect
of tamoxifen on patients with cervical cancer. One of the
measurements made, both before and again after tamox-
ifen was given, was microvessel density (MVD). MVD,
which is measured as number of vessels per mm2, is a
measurement that relates to the formation of blood ves-
sels that feed a tumor and allow it to grow and spread.
Thus, small values of MVD are better than are large val-
ues. Data for 18 patients are shown.22 How might these
data be analyzed?

FOREARM FOREARM
HEIGHT (CM) LENGTH (CM) HEIGHT (CM) LENGTH (CM)

163 25.5 157 26

161 26 178 27

151 25 163 24.5

163 25 161 26

166 27.2 173 28

168 26 160 24.5

170 26 158 25

163 26 170 26

PATIENT
MVD

BEFORE
MVD

AFTER PATIENT
MVD

BEFORE
MVD

AFTER

1 98 75 10 70 60

2 100 60 11 60 65

3 82 25 12 88 45

4 100 55 13 45 36

5 93 78 14 159 144

6 119 102 15 65 27

7 70 58 16 98 90

8 78 70 17 66 16

9 104 90 18 67 53

13.2.18 Consider the data of Exercise 13.2.17. Conduct
an appropriate complete analysis of the data that also
includes a graphical display and discussion of how the
data do or do not meet the necessary conditions for
validity.

13.2.19 As part of a large experiment, researchers plant-
ed 2,400 sweetgum, 2,400 sycamore, and 1,200 green ash
seedlings. After 18 years, the survival rates were 93% for
the sweetgum trees, 88% for the sycamore trees, and 95%
for the green ash trees.23 What type of analysis is appro-
priate for these data?

13.2.20 Consider the data of Exercise 13.2.19. Conduct
an appropriate complete analysis of the data that also
includes a graphical display and discussion of how the
data do or do not meet the necessary conditions for
validity.

13.2.13 A randomized, double-blind, clinical trial was
conducted on patients who had coronary angioplasty to
compare the drug lovastatin to a placebo. The percent-
age of stenosis (narrowing of the blood vessels) follow-
ing angioplasty was measured on 160 patients given
lovastatin and on 161 patients given the placebo. For the
lovastatin group the average was 46%, with an SD of
20%. For the placebo group the average was 44%, with
an SD of 21%.20 What type of analysis is appropriate for
these data?

13.2.14 Consider the data of Exercise 13.2.13.
(a) Conduct an appropriate analysis of the data.
(b) Describe a graphical procedure to visualize these data.
(c) Discuss of how the data likely meet the necessary

conditions for validity even though you do not have
access to the raw data.

13.2.15 Researchers studied persons who had received
intravenous immune globulin (IGIV) to see if they had
developed infections of hepatitis C virus (HCV). In part
of their analysis, they considered doses of Gammagard
(an IGIV product) received by 210 patients.They divided
the patients into 4 groups according to the number of



13.2.21 A group of female college students were divided
into three groups according to upper body strength.Their
leg strength was tested by measuring how many consecu-
tive times they could leg press 246 pounds before exhaus-
tion. (The subjects were allowed only one second of rest
between consecutive lifts.) The data are shown in the fol-
lowing table.24 What type of analysis is appropriate for
these data?
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UPPER BODY STRENGTH GROUP
LOW MIDDLE HIGH

55 40 181

70 200 85

45 250 416

246 192 228

240 117 257

96 215 316

225 134

Mean 140 169 231

SD 93 77 112

13.2.22 Consider the data of Exercise 13.2.21. Conduct
an appropriate complete analysis of the data that also in-
cludes a graphical display and discussion of how the data
do or do not meet the necessary conditions for validity.
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CHAPTER APPENDICES

Appendix 3.1
More on the Binomial Distribution Formula
In this appendix we explain more about the reasoning behind the binomial distribu-
tion formula.

The Binomial Distribution Formula

We begin by deriving the binomial distribution formula for . Suppose that
we conduct three independent trials and that each trial results in success (S) or
failure (F). Further, suppose that on each trial the probabilities of success and
failure are

There are eight possible outcomes of the three trials. Reasoning as in Example 3.6.3
shows that the probabilities of these outcomes are as follows:

 Pr{F} = 1 - p

 Pr{S} = p

n = 3
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OUTCOME NUMBER OF SUCCESSES NUMBER OF FAILURES PROBABILITY

FFF 0 3 (1 - p)3

FFS 1 2 p(1 - p)2

FSF 1 2 p(1 - p)2

SFF 1 2 p(1 - p)2

FSS 2 1 p2(1 - p)
SFS 2 1 p2(1 - p)
SSF 2 1 p2(1 - p)
SSS 3 0 p3

Again by reasoning parallel to Example 3.6.3, these probabilities can be combined
to obtain the binomial distribution formula for as shown in the table:n = 3
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This distribution illustrates the origin of the binomial coefficients. The co-
efficient is the number of ways in which 2 S’s and 1 F can be arranged;
the coefficient is the number of ways in which 1 S and 2 F’s can be
arranged.

An argument similar to this shows that the general formula (for any n) is

where

Combinations The binomial coefficient nCj is also known as the number of combi-
nations of n items taken j at a time; it is equal to the number of different subsets of
size j that can be formed from a set of n items.

The Binomial Coefficients: A Formula

Binomial coefficients can be calculated from the formula

where x! (“x-factorial”) is defined for any positive integer x by

and .
For example, for and the formula gives

To see why this is correct, let us consider in detail why the number of ways of
rearranging 4 S’s and 3 F’s should be equal to

Suppose 4 S’s and 3 F’s were written on cards, like this:

Temporarily we put subscripts on the S’s and F’s to distinguish them. First let us
see how many ways there are to arrange the 7 cards in a row:

S1 S2 S3 S4 F1 F2 F3

7!
4!3!

= 35

7C4 =
7!

4!3!
=

7 * 6 * 5 * 4 * 3 * 2 * 1
(4 * 3 * 2 * 1)(3 * 2 * 1)

j = 4n = 7
0! = 1

x! = x(x - 1)(x - 2) Á (2)(1)

nCj =
n!

j!(n - j)!

nCj = the number of ways in which j S’s and (n - j) F’s can be arranged.

Pr{j successes and n - j failures} = nCjp
j(1 - p)n- j

3C2(= 3)
3C1(= 3)

NUMBER OF

SUCCESSES, j FAILURES, n - j PROBABILITY

0 3 1p0(1 - p)3

1 2 3p1(1 - p)2

2 1 3p2(1 - p)1

3 0 1p3(1 - p)0
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There are 7 choices for which card goes first;

for each of these, there are 6 choices for which card goes second;

for each of these, there are 5 choices for which card goes third;

for each of these, there are 4 choices for which card goes fourth;

for each of these, there are 3 choices for which card goes fifth;

for each of these, there are 2 choices for which card goes sixth;

for each of these, there is 1 choice for which card goes last.

It follows that there are 7! ways of arranging the 7 cards. Now consider the locations
of the 4 S’s. There are 4! ways in which the S’s can be rearranged among themselves.
Likewise, there are 3! ways in which the F’s can be rearranged among themselves. If
we were to ignore the subscripts on the S’s and F’s, then some of the 7! ways of
arranging the 7 cards would be indistinguishable. Indeed, any rearrangement of the
S’s among themselves leaves the 7 card arrangement looking the same. Similarly, any
rearrangement of the F’s among themselves leaves the 7 card arrangement looking
the same. Thus, the number of distinguishable arrangements is

7!
4!3!



Appendix 3.2 Mean and Standard Deviation of the Binomial Distribution 569

Appendix 3.2
Mean and Standard Deviation 
of the Binomial Distribution
Suppose that Y is a binomial random variable with n trials and p as the probability
of success on each trial. Then we can think of Y as the sum of n variables X1,
X2, . . ., Xn, where each Xi is equal to either 0 or 1 (0 for a failure or 1 for a success).
That is, , with and . The n Xi’s are a
random sample from a hypothetical population of X’s that has average

.
Now consider the population standard deviation, sX, for the population of X’s.

Recall, from Section 2.8 that for a variable X the definition of s is

For the population of X’s, the mean is . Thus, for this population,

In the population of X’s, the quantity takes on only two possible values:

Furthermore, these values occur in the proportions and p, respectively, so
that the population average value of is equal to

This can be simplified to

Hence, the population average value of is , so 
The binomial random variable Y is . To find the mean and standard devia-

tion of Y, we need two facts:

Fact 1: For any collection of random variables X1, X2, . . . , Xn the mean of
.

Fact 2: For a collection of independent random variables X1, X2, . . . , Xn the
variance of .

(Recall that the variance,s 2, is the square of the standard deviation,s.)
Using Fact 1, we see that the mean of Y is the mean of , which is . Thus,

the mean of Y is .
Using Fact 2, the variance of Y is the variance of , which equals

or . Thus, the standard deviation of Y is
.sY = 1np(1 - p)

np(1 - p)g(Variance ofXi)
gXi

mY = np
gpgXi

gXi = g(variance ofXi)

gXi = g(mean ofXi)

gXi
sX = 1p(1 - p).p(1 - p)(X - p)2

= p(1 - p)

= p{p - p2 + 1 - 2p + p2}

p2 * (1 - p) + (1 - p)2 * p = p{p(1 - p) + (1 - p)2}

(0 - p)2 * (1 - p) + (1 - p)2 * p

(X - p)2
(1 - p)

(X - p)2 = b (0 - p)2 ifX = 0
(1 - p)2 ifX = 1

(X - p)2

sX = 3Population average value of (X - p)2.

mX = p

s = 3Population average value of (X - m)2

mX = p (since 0 * (1 - p) + 1 * p = p)

Pr{Xi = 1} = pPr{Xi = 0} = 1 - pY = gXi
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and so on . . .

1 2 3 4 5 6 7

1
2

1
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1
8
1
16

Figure A.4.1

Appendix 4.1
Areas of Indefinitely Extended Regions
Consider the region bounded between a normal curve and the horizontal axis.
Because the curve never touches the axis, the region extends indefinitely far to the
left and to the right. Yet the area of the region is exactly equal to 1.0. How is it pos-
sible for an indefinitely extended region to have a finite area?

To gain insight into this paradoxical situation, consider Figure A.4.1, which
shows a region that is simpler than that bounded by a normal curve. In this region,
the width of each bar is 1.0; the height of the first bar is , the second bar is half as
high as the first, the third is half as high as the second, and so on.The bars form a re-
gion that is indefinitely extended. Nevertheless, we shall see that it makes sense to
say that the area of the region is equal to 1.0.

1
2

Let us first consider the areas of the individual bars.The area of the first bar is 
the area of the second bar is , the third , and so on. Now suppose that we choose
a number, say k, and add up the areas of the first k bars, as follows:

1
8

1
4

1
2,

BAR HEIGHT OF BAR CUMULATIVE TOTAL AREA

1 1
2

1
2

2
1
4

3
4

3
1
8

7
8

4
1
16

15
16

o o o

k
1

2k
2k - 1

2k
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The total area of the first two bars is , the total area of the first three bars is ,
and so on. In fact, the total area of the first k bars is equal to

If k is very large, this area is very close to 1.0. In fact, we can make the area as
close to 1.0 as we wish, simply by choosing k large enough. In these circumstances it
is reasonable to say that the total area of the entire, indefinitely extended region is
equal to exactly 1.0.

The preceding example shows that an indefinitely extended region can have a
finite area. Likewise, the total area under the normal curve is 1.0 (but the proof of
this fact requires fairly advanced calculus).

2k - 1

2k
= 1 -

1

2k

7
8

3
4


